WF4313/6413-Fisheries Management

Announcements

Revised Schedule**

- October 30 = Group 1 @ Panther Creek
- November 6th = Group 2 we'll do something
- November 13th = NO LAB... ↔
- Exam II = November 14th
- November 20th = Group 1 will do what group 2 did
- November 27th & December 4th ???
- ****** Contingent on van availability

Lab 10/30

- WADERS
- Bug Spray
- Water
- Sunscreen
- Rain gear?

Group 1 will go!

Meet in the parking lot in front of Thompson...Assuming I can find the vans. Interested in chasing more lamprey? Opportunities to assist on an undergraduate research project.

WHERE WE LEFT OFF

Meeting management objectives

Partial Controllability-not fully implementing a management alternative

Commercial versus Recreational

Value: Biomass

Exponential population modelcontinuous

Graham-Schaefer model

Fox model

Pella-Tomlinson model

HOW DO MANAGERS DETERMINE HOW MUCH TO HARVEST IN A COMMERCIAL FISHERY? FIRST THEY NEED TO ESTIMATE THE AMOUNT OF FISH OUT THERE!

What do we need to figure out ho much to harvest?

What is in the biomass dynamics models?

- 1. States: Fish abundance & biomass
- 2. Parameters:
 - 1. Intrinsic growth rate
 - 2. Carrying capacity

How do we estimate abundance?

Estimators types

- 1. Removals
 - 3 pass removal
 - Harvest removal
- 2. Capture-recapture
 - Closed population estimators
 - Open population estimators

Removals: 3 pass depletion

If we remove fish with a constant probability or exploitation then we can relate the cumulative catch and actual catch to estimate capture probability and estimate abundance

See lab 6 for more details & lab @ Panther Creek

Capture-Recapture

1. Capture fish and mark them with a tag that can't get lost

Capture-Recapture

2. Release tagged fish back into the population to mix

Capture-Recapture

3. Go back for another capture occasion, hopefully you catch a few that you caught

before.

Underlying concept of capturerecapture

- A sample of animals is Caught (C1), marked, and released (M2).
- Later a sample of C2 animals is Captured, of which R2 animals are recaptures that were previously marked.
- If capture probability (p) is independent of marking status, then the proportion of marked animals in the second sample should be equivalent to the proportion of marked animals in the total population so that

$$\frac{C}{R} = \frac{M}{N}$$

Underlying concept of capturerecapture

• If *N* is the total *catchable* population size. Solving for *N* yields the estimator:

$$N = \frac{(M \cdot C)}{R}$$

Estimating N if sample size is small

- If sample size is small, the L-P estimator is biased.
- For example, what happens if the number of recaptures is zero? A modified version with less bias was originally developed by Chapman (1951) and is commonly called the modified Petersen estimate in fisheries:

$$N = \frac{(M+1) \cdot (C+1)}{R+1} - 1$$

Lincoln-Petersen estimator assumptions

- The population is closed (geographically and demographically).
- All animals are equally likely to be captured in each sample.
- Capture and marking do not affect catchability.
- Each sample is random.
- Marks are not lost between sampling occasions.
- All marks are recorded correctly and reported on recovery in the second sample.

What is capture probability (p)?

- Defined as the probability of an animal being caught in <u>any</u> trap.
- Possible sources of variation in *p* include:
 - *heterogeneity* (e.g., sex, age, social status, size of fish),
 - behavior (e.g., trap happy or trap shy), and
 - *time* (e.g., effects of weather or sampling effort on p).

Example of Lincoln Peterson Estimator

- Suppose you caught and tagged 948 crappie
- Then you caught 421 the next day of which 167 were tagged.

$$N = 2390 = \frac{421 \cdot 948}{167}$$
Biased
$$N = 2383 = \frac{(421+1) \cdot (948+1)}{167+1} - 1$$
Unbiased

>2 Occasions Schnabel Estimator

- Extends the Lincoln-Peterson method to a series of samples in which there are 2, 3, 4,..., n samples.
- Individuals caught at each sample are first examined for marks, then marked and released.
- Only a single type of mark need be used because we just need to distinguish 2 types of individuals:
 - marked, caught in one or more prior samples; and
 - unmarked, never caught before.

>2 Occasions Schnabel Estimator

- For each sample t, the following is determined:
 - Ct = Total number of individuals caught in sample t
 - Rt = Number of individuals already marked (Recaptures) when caught in sample t
 - Mt = Number of marked animals in the population just before the sample is taken.
- Schnabel treated the multiple samples as a series of Lincoln-Peterson (L-P) samples and obtained a population estimate as a weighted average of the L-P estimates to estimate N:

 $N = SUM (Mt^*Ct) / ((SUM Rt) + 1)$

Assumptions of the Schnabel method

- Same as Lincoln-Petersen estimator
- Assumptions apply to all sampling periods.
- Every individual in the population is assumed to have the same capture probability for a given sampling occasion
- Capture probabilities can vary among sampling periods).

The major advantage of multiple sampling is that it is possible to evaluate the data for violations of assumptions, such as unequal capture probabilities.

Example of Schnabel Estimator

 $\sum_{t} C_{t} M_{t} = 10,740$ $\hat{N} = \frac{10,740}{24} = 447.5 \text{ sunfish}$

Date, t	Number of fish caught	Number of recaptures ^b	Number newly marked (less	Marked fish at large ^d
	Ct	Rt	deaths) ^c	Mt
June 2	10	0	10	0
June 3	27	0	27	10
June 4	17	0	17	37
June 5	7	0	7	54
June 6	1	0	1	61
June 7	5	0	5	62
June 8	6	2	4	67
June 9	15	1	14	71
June 10	9	5	4	85
June 11	18	5	13	89
June 12	16	4	10	102
June 13	5	2	3	112
June 14	7	2	4	115
June 15	19	3	-	119
Totals	162	24	119	984

^a S.D. Gerking (1953) marked and released sunfish in an Indiana lake for 14 days and obtained these data.

^b The number of fish already marked when taken from the nets.

^c Note that there were two accidental deaths on June 12 and one death on June 14.

^d Number of marked fish assumed to be alive in the lake in the instant just before sample t is taken.

TABLE 2.2 Mark-recapture data obtained for a Schnabel-type estimate of population size

Capture-Recapture in practice more than 2 occasions

Suppose you go out 4 times to catch fish and your capture probability is 0.3. If there are 10,000 fish in the population the fish can be: Captured (p=0.3) or not (p=0.7) on occasion 1 Captured (p=0.3) or not (p=0.7) on occasion 2 Captured (p=0.3) or not (p=0.7) on occasion 3 Captured (p=0.3) or not (p=0.7) on occasion 4

Capture histories of individuals

	Capture		
	History	Count	
Never captured	> 0000	24241	
	0001	10396	
	0010	10164	
	0011	4324	
	0100	10170	
Capture history	0101	4316	
(1 is captured —	→ 0110	4375	
and 0 is not)	0111	1898	Adds up to
	1000	10458	10,000
	1001	4395	
	1010	4381	
	1011	1924	
	1100	4437	
	1101	1881	
	1110	1876	
Captured every time —	→ 1111	764	

Probability of not being captured

(1-p)*(1-p)*(1-p)=Probability no capture (1-.3)*(1-.3)*(1-.3)*(1-.3)=Probability no capture (.7)*(.7)*(.7)*(.7)=0.24

> This number is 0000 24241 ~ ~100,000*0.24! 0001 10396 0010 10164 0011 4324 0100 10170

Benefits of individual capture histories?

- Can deal with heterogeneous P
- Behavior (trap happy, trap shy)
- Time effects
- Individual covariates (e.g., size)

MANAGEMENT CASE STUDY: PALLID STURGEON ABUNDANCE

Adult PSPAP phase 1 pilot

Adult sampling pilot

Bend 43

Abundance estimates

Number of weeks

Abundance estimates: Wild & unknown origin

Number of weeks

Abundance estimates: Size class

Size class, mm

Capture probability

Pallid sturgeon

Size class, mm

Moon Lake Paddlefish Fishery

MISSISSIPPI FRESHWATER COMMERCIAL FISHERY AND PADDLEFISH COMMERCIAL FISHERY DURING FISCAL YEAR 2011

Report For Project 109:

Freshwater Commercial Fishery Coordination

Freshwater Fisheries Report No. 279

Project Leader: Garry Lucas

Sections:

PADDLEFISH COMMERCIAL FISHERY MOON LAKE SPECIAL FISH HARVEST SEASON FRESHWATER COMMERCIAL FISHERY HARVEST SURVEY

Used a Lincoln Peterson estimator

MOON LAKE PADDLEFISH POPULATION ESTIMATE

Fish caught and tagged in the marking event (M) x Total fish recaptured (C)

Total recaptured fish that were also tagged (\mathbf{R})

Table 8. Five estimates of Paddlefish population size for Moon Lake ranged from 1,109 to 2,056 fish, with an average value of 1,625 fish.

					Recaptured	Population
	Total		Tagged	Available	Fish that were	estimate for
	Catch		Fish	Tagged	Tagged	date
Date	(C)	Harvest	Harvest	(M)	(R)	
2/7	217	132	5	92	18	1109
2/8	263	168	4	86	11	2056
2/9	314	148	4	82	12	2146
2/11	175	101	7	75	11	1193
2/12	137	60	4	71	6	1621
Total	1140	609	24	67	58	Avg. =1625

Assumptions violated? You Betcha...Marked and unmarked fish were harvested! Population <u>was not</u> closed.